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ABSTRACT: In this study, metabolic profiles of a set of 48 rice germplasms from the Chinese core collection were obtained by gas
chromatography and time-of-flight mass spectrometry (GC-TOF-MS). Forty-one metabolites were identified and relatively
quantified according to the internal standard (IS).Wide ranges of variations for all metabolites were observed among rice accessions.
The maximum/minimum ratios varied from 4.73 to 211.36. The metabolites were categorized into seven groups based on their
chemical characteristics. Clustering analysis and a correlation network showed that most of the metabolites had variations among
rice accessions in the same direction. Using 218 molecular markers, association mapping was conducted to identify the
chromosomal loci influencing the concentrations of identified metabolites. Twenty markers were identified associating with the
concentrations of 29 metabolites [-lg(P) > 3]. Allelic effects were investigated in detail in two markers (RM315 and RM541) as
examples.
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’ INTRODUCTION

Rice is one of the world's most important food crops,
providing the caloric needs for at least one-third of the world
population. As a model cereal crop, rice has several huge
collections of germplasms around the world.1 The genetic
diversity stored in this large number of accessions is undoubt-
edly a great treasure for human being. However, it is still a great
challenge to characterize the genetic variations in the germ-
plasm collections of rice and other major crops because of the
huge number of accessions and the abundant characteristics to
be evaluated. As a potential solution, core collections and mini-
core collections of germplasms have been developed for several
crops in China.2�4 A set of germplasms containing a few
thousand or several hundred accessions, but bearing a high
proportion of genetic diversity, can be applied to fine genotyp-
ing and phenotyping experiments.

Metabolites are the end products of cellular regulatory
processes, and metabolomics could link genotypes and pheno-
types together.5 Cereal chemistry has played an important role
in studies of rice cooking quality and the determination of
nutrient composition. For example, the cooked rice of japonica
varieties is usually softer and stickier than indica varieties due to
a lower amylose content and higher gel consistency. The
protein content is considered in routine tests, and the concen-
trations and compositions of amino acids are frequently
reported.6 However, the identification of the global metabolic
components in rice grains has been seldom reported in large
sets of germplasms. After high-throughput methodologies of
analytical chemistry were developed, metabolite and element

profiling in large populations became possible. Many analytical
methods like gas chromatography�mass spectrometry (GC-
MS), high-performance liquid chromatography mass spectro-
metry (HPLC-MS), nuclear magnetic resonance (NMR), and
inductively coupled plasma atomic emission spectroscopy
(ICP-AES) have been adopted for such investigations in crop
species.7�9 As a useful metabolic tool, GC-MS coupled with
multivariate analysis was widely used in nontargeted tests of
metabolites in different rice germplasms.10,11 However, no
study has reported an investigation of the metabolic diversity
in a large germplasm set and linked metabolite contents with
DNA markers by association mapping.

Association mapping, especially linkage-disequilibrium (LD)
mapping, has been applied in a number of plant species.4,12,13

Compared with traditional quantitative trait loci (QTL) linkage
analysis, association mapping has the following advantages: It
provides better genome coverage of marker polymorphisms
than any biparental population, it has a higher mapping
resolution14 and the possibility to detect multiple allelic effects,
and it does not require the development of segregating popula-
tions. Several research groups have successfully conducted
whole-genome association analyses of multiple agronomic
traits using microsatellite (SSR) markers,15,16 which became
a popular and indispensable method in agriculture genetic
studies.
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In this study, the metabolic profiles of 48 rice varieties from a
subset of a core collection of Chinese rice germplasms were
obtained by gas chromatography and time-of-flight mass
spectrometry (GC-TOF-MS). Variations in their metabolite
characteristics were investigated by assessing their respective
ranges among the germplasms as well as their categorical
distributions and correlations. Dominant correlations among
nutrients are useful in crop breeding, especially in multiple
nutrient components improvement at selection stage. Markers
that associated with metabolite concentrations were detected
by association analysis using a mixed linear model (MLM), and
the allelic effects of two associated markers (RM315 and
RM541) were presented as examples. Association mapping
and allelic effect analysis are helpful for right parental germ-
plasms screening and marker-assisted selection (MAS) in
breeding for specific nutrients.

’MATERIALS AND METHODS

Plant Materials. A total of 48 accessions of rice varieties (Oryza
sativa L.) were selected from a core collection of Chinese rice
germplasms.2 Rice accessions in this study were landraces or modern
varieties from 19 provinces or municipalities in China, including Anhui,
Fujian, Guangdong, Guangxi, Guizhou, Hebei, Heilongjiang, Henan,
Hunan, Jiangsu, Jiangxi, Liaoning, Ningxia, Shanghai, Shanxi, Sichuan,
Tianjin, Xizang, and Yunnan (Table S1 in the Supporting Information).
According to the information from the germplasm database, concerning
morphological traits and surveying by molecular markers,16 those 48
accessions were divided into two subgroups, including 25 indica varieties
(I01�I25) and 23 japonica varieties (J01�J23).

Grain samples used in this experiment were collected from the plants
grown in the summer season of 2007 in Qingpu District, Shanghai,
China. The field management followed normal agricultural practices.
Each genotype was transplanted in five rows, with 20 cm between plants
and 30 cm between rows. For each variety, about 30 rice plants were
planted concurrently, and the seeds of these plants were collected
together. After harvest, the grains were stored in refrigeration house of
Shanghai Agrobiological Gene Center at low temperature from 5
to15 �C and 45% relative humidity (RH) until they were sampled in
December 2007.
Metabolite Profiling. Chemicals. All solvents used in chromato-

graph with HPLC grade, and a total of 14 chemical standards (see
Table 1) for qualitative analysis were purchased from Sigma-Aldrich
(Beijing, China). Ultrapure water used in this experiment was produced
by Milli-Q filtration (Millipore, MA).
Sample Preparation. The sample pretreatment in this experiment

was similar to a previously described method.17 Brown rice grains were
ground into powder and sieved by 60mesh sieves. Then, the powder was
frozen dried by lyophilizer (Labconco, United States) for further
extraction. Three hundred milligrams of powder, 3 mL of methanol�-
water solution (4:1, V/V), and 100 μL of capric acid [0.30 mg/mL,
internal standard (IS)] were added into a 10 mL glass tube. After vortex
shaking for 1min, themixture was immersed for 30min, sonicated for 60
min, and centrifuged at 12000g for 10 min to obtain the supernatant.
Two milliliters of the supernatant solution was freeze dried for 12 h.
Then, the dried extracts were mixed with 90 μL of N,O-bis
(trimethylsilyl) trifluoroacetamide having 1% of trimethylchlorosilane
and 80 μL of pyridine . At last, the mixture was silanized at 75 �C for 45
min to increase samples' volatility. In method validation, sample
pretreatments were repeated by five times in the same conditions,
and the reproducibility was acceptable. More details of this pro-
cedure can be found in ref 17. For each rice variety, two samples were
repeatedly analyzed as technical replicates, and each sample was

duplicated and analyzed by GC-MS. The average peak areas of each
component in all repeated assay for each variety were utilized for statistic
analysis.

Metabolites Identification. A LECO Pegasus 4D TOF-MS (LECO
Corp., MI) equipped with an Agilent 6890NGCwas used to identify and
quantify the metabolites. The conditions of GC-MS for analysis were
according to our previous report17 with little modification. A peak table
was obtained from the LECO ChromaTOFTM workstation (version
3.25). In accordance with a previously described approach,18 the signal-
to-noise ratio of 100 was considered as a suitable threshold; about 200
peaks fulfilled this criterion and were subjected to further assessment.
Peak alignment was carried out with homemade software, following the
same strategies described in our previous work.19 The chromatogram
having the most peaks among all samples was chosen as reference, and
the match window of retention time was 6 s. According to the “80%
rule”,20 peaks with zero areas in more than 20% of the samples were
removed from the total peak table. Finally, 76 compounds remained for
further investigation, and 41 metabolites were identified by comparing
their mass spectra to the data in NIST library (National Institute of
Standards and Technology, United States). Among the 41 metabolites,
21 metabolites were confirmed through standards identification. The
relative quantification of metabolites was determined by the IS and
represented by mg per 100 g of dried powder of brown rice grains.
Metabolites Statistic Analysis. The statistical software package

of S-PLUS 6.1 for windows was used in this experiment. Pair-wise
correlations were first estimated among metabolites. Agglomerative
hierarchical clusterings were constructed for 41 metabolites. The Pajek
program (v1.23) was suitable for large network analysis and was used to
develop two networks based on the array of correlation coefficients
among metabolites, according to a previously described method
(Batagelj and Mrvar, http://pajek.imfm.si/doku.php?id=pajek, 21).
One network showed the metabolites with very high correlation
coefficients in the positive direction (rg 0.70), while the other showed
some metabolites having weak negative correlations (r e �0.10).
Association Mapping. A total of 218 markers [SSR + insertion-

deletion markers (Indel)] were used in population genotyping (Table
S2 in the Supporting Information). The software SPAGeDi22,23 was
used to estimate the kinship coefficients (K values). According to the
report of Wen et al.,16 52 unlinked or loosely linked marker loci (i.e.,
four on chromosome 7 together with 48 on other chromosomes;
mostly with physical distances larger than 1 Mb) were used to analyze
the population structure. Associations between 41 metabolites and 218
markers were calculated using a MLM function based on the (Q + K)
method in TASSEL2.0.24 Significant marker-trait associations were
indicated by �log(P) g 3. Pair-wise mean comparisons were con-
ducted by S-Plus with Window V6.1 to test the differences among the
accession groups defined by alleles of associated markers, based on the
Fisher LSD method.

’RESULTS

Variation in Rice Grain Metabolites. Among 41 metabolites
detected in this study, the mean concentrations had a range from
1.11 to 60.95 mg/100 g (Table 1). Of these 41 metabolites, 23
metabolites had nonzero values in all rice accessions, while 18
metabolites had zero values in some accessions. Excluding the
zero values, there were still wide variations of metabolite con-
centrations among rice accessions. The ratios of maximum to
minimum values varied from 4.73 in ethanedioic acid (M01) to
211.36 in raffinose (M38). The 41 metabolites were briefly
categorized into seven groups based on their chemical character-
istics, including 15 amino acids, 8 sugars, 6 organic acids, 6 fatty
acids, 2 sterols, 2 polyols, and 2 others.
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Clustering and Correlations among Metabolites. On the
basis of the variations of metabolites among 48 rice accessions,
hierarchical clustering was constructed (Figure 1) to expatiate
the similarity between the metabolites in grains. It was observed
that a large proportion of the metabolites were clustered into
three branches with small dissimilarities: The first group had
seven amino acids, four organic acids, two sugars, one sterol, and
one polyol; the second group had five amino acids, one fatty acid,
and one sterol; a small separate branch had two sugars; and the

third group had three amino acids, two organic acids, two fatty
acids, one sugar, and two others. Taking 34 of the above-
mentioned metabolites together as a dominant branch, only
seven remaining metabolites formed three more branches. In the
order of ascending dissimilarity from the major group, there were
one group including glycerol, trehalose, and D-glucose, one group
with raffinose alone, and another group including hexadeconoic
acid, oleic acid, and linoleic acid. Although dry grains were used
as samples in this experiment, which are "inactive" organism in

Table 1. Summary of the Variations of 41 Metabolites Detected in Brown Rice of 48 germplasm Accessions

code names categoriesa Nb mean ( SDc max mind max/min ratio corr. pairse

M01 ethanedioic acid OA 44 2.24( 1.05 4.69 0.99 4.73 12

M02 carbodiimide AA 48 4.17 ( 1.98 11.20 1.33 8.42 33

M03 1,2-ethanediol polyol 45 1.11( 0.49 2.74 0.40 6.85 15

M04 lactate OA 46 1.85( 1.44 7.38 0.31 24.17 30

M05f L-alanine AA 48 4.99( 3.00 20.84 1.45 14.40 36

M06f glycine AA 46 1.13( 0.82 3.75 0.24 15.50 16

M07f L-norvaline AA 48 2.60( 1.57 9.81 0.85 11.48 28

M08f L-norleucine AA 46 1.73( 1.04 5.09 0.50 10.11 17

M09f phosphoric acid others 47 7.97( 5.38 30.91 0.76 40.66 4

M10 glycerol polyol 47 19.6( 10.33 48.39 8.31 5.82 28

M11 nicotinic acid OA 47 1.46( 0.78 3.83 0.46 8.37 30

M12f L-proline AA 48 5.31( 3.93 21.76 0.91 24.04 33

M13f serine AA 48 5.30( 2.46 13.60 1.89 7.21 33

M14f L-threonine AA 48 2.44( 1.27 5.79 0.82 7.04 28

M15 mercaptosuccinic acid OA 37 1.84( 1.16 6.51 0.49 13.36 33

M16 pyroglutamic acid AA 48 3.41( 1.85 12.54 1.50 8.35 34

M17f L-aspartic acid AA 48 9.00 ( 3.56 20.98 4.02 5.22 31

M18f 4-aminobutanoic acid AA 45 2.37( 1.58 7.52 0.59 12.76 30

M19 citrulline AA 48 2.73( 1.41 6.42 0.41 15.80 33

M20f glutamic acid AA 48 11.98( 5.84 41.63 4.98 8.35 31

M21f L-asparagine AA 46 12.48( 6.90 42.17 4.73 8.92 17

M22 xylitol sugar 48 5.89( 4.56 29.66 1.37 21.67 22

M23 glycerol-3-phosphate others 48 14.06( 6.93 37.64 6.05 6.22 33

M24 gluconic acid lactone sugar 48 10.56( 5.19 33.39 3.28 10.17 33

M25f citric acid OA 48 9.04( 5.15 29.33 3.09 9.48 31

M26 tetradecanoic acid FA 48 7.58( 4.12 18.79 2.56 7.35 30

M27f D-glucose sugar 48 27.61 ( 20.42 107.01 8.12 13.18 28

M28 L-tyrosine AA 44 1.49( 0.95 4.34 0.32 13.52 3

M29f mannitol sugar 48 5.12( 5.50 31.00 0.58 53.66 13

M30f glucitol sugar 48 2.37( 2.53 11.18 0.30 37.81 30

M31f hexadecanoic acid FA 48 48.72( 19.25 109.80 22.61 4.86 32

M32f linoleic acid FA 48 60.95( 27.15 159.03 12.23 13.00 18

M33f oleic acid FA 47 40.98( 18.91 108.63 5.77 18.84 17

M34 octadecanoic acid FA 48 14.89( 5.98 33.42 6.99 4.78 27

M35 ethyl tartrate OA 48 7.08( 3.56 24.84 1.76 14.09 31

M36 galacturonic acid sugar 35 1.92( 1.16 5.17 0.38 13.44 13

M37 monopalmitin FA 34 5.41( 2.37 10.85 1.92 5.65 28

M38f raffinose sugar 48 31.24( 30.52 123.46 0.58 211.36 1

M39f trehalose sugar 47 27.15( 12.8 72.92 4.59 15.87 21

M40 stigmasterol sterol 41 1.92( 1.06 4.96 0.29 17.25 7

M41 cholesterol sterol 46 5.47( 2.84 16.14 0.43 37.61 24
aOA, organic acid; AA, amino acid; and FA, fatty acid. bThe number of accessions for whose metabolites observations was above the assay limits.
cMetabolite concentrations were presented as relative quantification data (mg/100 g). dThe minimum values among the observations besides the zero
values. eThe number of significant positive correlation pairs (Pe 0.01) between this metabolite and each of other 40 metabolites. fThose metabolites
validated by standard chemicals.
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the plant, the clustering structures still implied some variations
among the metabolites parallel to metabolic pathways, for
example, the variations among hexadeconoic acid, oleic acid,
and linoleic acid. These three fatty acids connect closely in meta-
bolic reaction in living organisms.
Similar to the results obtained from the clustering analysis, posi-

tive correlations were widely observed among most metabolites.
Among 40 pairwise relationships from one metabolite to all other
metabolites, 19 metabolites had 30 or more significant positive
correlative pairs; 9 metabolites had 20�30 positive correlative
pairs; 9 metabolites had 10�20 pairs; and only 4 metabolites had
less than 10 significant positive correlative pairs (Table 1).
Positive correlations with the highest coefficients (r g 0.70)

were presented as a network frame in Figure 2A. It was found that
10 amino acids had close correlations with each other and with
metabolites in other categories, especially serine (M13), L-
alanine (M05), glutamic acid (M20), L-proline (M12), etc. Five
other metabolites, glycerol-3-phosphate (M23), gluconic acid
lactone (M24), ethyl tartrate (M35), citric acid (M25), and
tetradecanoic acid (M26), showed high correlations with each

other and with many amino acids. The high correlations among
glycerol-3-phosphate (M23), tetradecanoic acid (M26), glycerol
(M10), hexadecanoic acid (M31), octadecanoic acid (M34), ethyl
tartrate (M35), and gluconic acid lactone (M24) were probably
coincident with their relations in sugar and fatty acid pathways.
Two groups of metabolites had pairwise negative correlations

(r e �0.10, Figure 2B). First, stigmasterol (M40) had negative
correlations with linoleic acid (M32) and mercaptosuccinic acid
(M15). Second, it was observed that raffinose (M38) had
negative correlations with seven other metabolites including four
sugar alcohols. The coefficients varied between�0.11 and�0.22
for the above-mentioned negative correlations. In general, the
negative relationships among rice grain metabolites seemed
much weaker than the positive ones. However, the negative
correlations involving raffinose were interesting as raffinose was
regarded as one of the antinutritional oligosaccharides, so it
would be useful in crop's nutrition modification.
Association between Metabolite Concentration and Mo-

lecular Markers.On the basis of MLM analysis, significant asso-
ciations were declared at �log(P) g 3 as shown in Figure 3.
The number of associated molecular markers for each metabolite
varied from one to three in most cases, but there were four or
five markers for several metabolites such as L-alanine (M05),
D-glucose (M27), and mannitol (M29). On the other hand, one

Figure 1. Hierarchical clustering of 41 metabolites based on their
content in brown grains of 48 rice accessions. The distance between
the clusters represents the similarities between the items that they
contain. The color scheme of the metabolites follows the symbols on the
top right corner, indicating their different categories; for example, serine
with a green color belongs to amino acid.

Figure 2. Correlations among metabolites detected in brown rice
samples of 48 accessions. (A) Positive correlation networks among 23
metabolites with r g 0.70. (B) Negative correlation networks among
13 metabolites with r e �0.10. Circles filled with different colors
represent different categories of metabolites, and the color scheme
follows that of Figure 1. Sizes of circles were determined by the number
of correlation pairs.
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marker could be involved in associations with only onemetabolite,
or with several metabolites, for example, RM520 on chromosome
3 associated with 12 metabolites and RM257 on chromosome 9
associated with eight metabolites.
Taking two markers as examples, the effects of multiple alleles

were interpreted in detail (Table 2). RM315 was associated with
the concentrations of L-alanine (M05) with �log(P) = 3.36.
Eight varieties (alleles 0 and 4) had significantly higher means
than those of other genotypes (alleles 1, 2, and 3). This marker
was also associated with mannitol (M29) and had three groups of
genotypes according to different allelic effects at high test
significance (P e 0.01); that is, three varieties with allele 0 had
a mean value of 2.36 mg/100 g, five varieties with allele 4 had a
mean value of 1.29 mg/100 g, and 40 genotypes with alleles 1, 2,
and 3 had means near 0.5 mg/100 g.
RM541 was associated with the concentrations of four meta-

bolites with �log(P) values varied from 3.01 to 4.79. Six groups
with alleles 0�5 had 5, 8, 3, 4, 25, and 3 varieties, respectively. For
L-aspartic acid (M17), varieties with allele 5 had the highest
concentrations that were highly different from the group means
with alleles 0, 4, 2, and 1. The mean value of the group with allele
3 was also significantly higher than those of groups with alleles 4
and 1. The different alleles' means of gluconic acid lactone (M24)
showed similar patterns to L-aspartic acid, but four varieties
within the group with allele 3 had the highest mean value. The
means of groups with different RM541 alleles had almost the
same trends in citric acid (M25) and D-glucose (M27) as in L-
aspartic acid. In other words, rice germplasm accessions having
alleles 3 and 5 of RM541 had higher concentrations of those four
metabolites in grains than the other accessions (Table 2).

’DISCUSSION

Metabolites Related to Grain Quality and Nutrients.Dried
cereal grains are organisms at relatively inactive stage in the life

cycle of the plant. Grains can be used as seed stocks and serve as
storage of nutrients when used as food or feed. Variations in the
chemical compositions of grains are important to grain consu-
mers and to both seed and food/feed industries for the purposes
of quality control.
Taking nutrient values as an objective of rice breeding pro-

grams, the key question is which metabolites should be increased
or decreased in concentration and to what extent? Programs like
Harvest-Plus have been making great efforts to develop crop
germplasms with increased nutritional content and/or availabil-
ity of vitamin A, Fe, Zn, etc. (http://www.harvestplus.org). High
lysine content is another popular target in cereal breeding
programs.25 However, the answers to above questions become
complicated and uncertain when considering factors such as rice
plant growth, grain yield, performance under storage, and con-
sumption habits (e.g., favored taste, brown rice vs milled rice,
etc.). For example, low phytic acid varieties (from mutants or
transgenic breeding) can provide much more free phosphorus as
compared to other varieties and can increase the absorption of
Ca, Fe, and Zn at the same time.26 However, varieties with low
phytic acid usually show difficult growth or development, lower
grain yield, and rapid loss of seed germination ability.27

Highly positive correlations were found in dominant pairwise
relationships among the metabolites in this study. This kind of
information is valuable for breeders to select parental germplasms
and to enable the integrated improvement of multiple nutrient
factors (like several amino acids) at the same time (Figure 3). A
single positive correlation and seven pairs of negative correla-
tions (r e �0.10) between raffinose (M38) and other metabo-
lites seemed to be encouraging for breeders, as reducing raffinose
content would increase or at least would not decrease the
concentrations of other metabolites such as alanine and proline.
Associated Molecular Markers Valuable for Nutrient

Breeding Programs. To enable effective selection of multiple
nutrients in rice grains, a highly efficient platform is necessary to

Figure 3. Marker loci associated with the concentrations of metabolites based on the mixed linear model [MLM,�log(P)g 3]. Totally, 29 metabolites
(x-axis) and 20 markers (y-axis) were indentified having significant associations between each other. The markers from RM490 to RM184 were ordered
by their chromosome locations from the top of chr. 1 to bottom of chr. 12, and the metabolites (x-axis) were ordered by their retention time. Sizes of the
blue bubbles represent the values of �log(P) approximately.
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measure the concentrations of all metabolites or a group of targeted
metabolites in a large quantity of breedingmaterials; however, these
procedures are quite time-consuming and costly. As in the cases of
many other complex traits, MAS can play an important role in
breeding programs targeted for specific grain nutrients.
Like traditional mapping, association mapping is also an

efficient way to find powerful molecular markers for crop
improvement by MAS.14,28 Several associations between meta-
bolites and markers found in this experiment coincided with the
data presented on Rice Annotation Project (RAP, http://www.
dna.affrc.go.jp/database/). For example, RM257 was found
associatedwith L-norvaline (amino acid, -lg(p) = 5.48) and glucitol
(sugar, -lg(p) = 5.67) and 4-aminobutanoic acid (amino acid,
-lg(p) = 3.00) in this experiment. Then through searching in the
RAP database, three genes (Os09t0432600, Os09t0432600, and
Os09t0433900) that may significantly related to these three

metabolites were found near the RM257 ((50Kb of RM257 on
chromosome 9). Os09t0432600 was similar to an amino acid
transporter, Os09t0432900 was supposed to be a glycosyl
transferase, and Os09t0433900 was similar to the alanine amino-
transferase (EC 2.6.1.2), which correlated with 4-aminobutanoic
acid in the pathway of arginine and proline metabolism (KEEG,
http://www.genome.jp/kegg/). So the association result identi-
fied in this experiment was powerful and could be used in crop
improvement through MAS, even there were some shortage in
this mapping population.
In this study, a lot of associated molecular markers were

identified for 29 metabolites in the population of core rice
germplasms. In each associated marker locus, the favorable allele
could be found bymean comparison among different alleles. Then,
the germplasm having adequate phenotypic performance and pos-
sessing the favored allele in the associated loci could be selected

Table 2. Pair-Wise Multiple Comparisons of Average Metabolite Contents in Rice Germplasms Grouped by the Alleles of RM315
and RM541

markers metabolites �log(P) allelesa Nb meansc P < 0.05 P < 0.01

RM315 L-alanine (M05) 3.36 0 3 1.31 a A

4 5 1.01 a A

3 17 0.54 b B

2 17 0.54 b B

1 6 0.45 b B

mannitol (M29) 4.74 0 3 2.36 a A

4 5 1.29 b B

1 6 0.48 c C

3 17 0.45 c C

2 17 0.40 c C

RM541 L-aspartic acid (M17) 3.01 5 3 1.88 a A

3 4 1.59 ab AB

0 5 1.09 bc B

4 25 1.02 c B

2 3 1.00 bc B

1 8 1.00 c B

gluconic acid lactone (M24) 4.78 3 4 2.56 a A

5 3 1.76 b AB

0 5 1.53 bc B

2 3 1.44 bc B

4 25 1.10 c B

1 8 1.06 bc B

citric acid (M25) 3.99 5 3 2.01 a A

3 4 1.92 a A

0 5 1.26 ab AB

4 25 1.02 b B

2 3 0.95 b AB

1 8 0.74 b B

D-glucose (M27) 4.79 5 3 8.27 a A

3 4 6.36 a AB

0 5 3.45 b BC

2 3 3.05 b BC

1 8 2.72 b C

4 25 2.69 b C
aDifferent allele types of the marker, arranged in descending order of the means. b N represents the number of rice variety with a fixed type allele; for
example, 3 at first line represents that there are three rice varieties in allele type 0 at the loci of RM315. cMeans followed by different letters were
significantly different by the LSD test at the level P e 0.05 (in lowercase) and P e 0.01 (in uppercase).
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as the donor parent to make crosses with modern varieties as the
recurrent parent in marker-assisted backcross breeding proce-
dures. Instead of frequent measurements of metabolites, materials
could be selected for backcrossing or selfing in early generations
by tracing the targeted alleles of associated markers.
We also found that several metabolites can be coinfluenced by

one marker locus (Figure 3), and favored alleles can be shared by
different metabolites (Table 2). In this case, the concurrent
improvements for several nutrients (and/or antinutrients) could
be expected to occur in the breeding population derived from a
single cross with the parental line and marker allele with multiple
contributions.
It should be noted that this experiment was only a preliminary

study in this area. More detailed case analysis of candidate alleles
and donor parents for marker-assisted selection must be con-
ducted before the above-mentioned strategy can be actually
effective in breeding practice.
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